Weekly-220619
本文最后更新于:June 19, 2022 pm
本周学习汇报
Elucidating the Design Space of Diffusion-Based Generative ModelsImproved Vector Quantized Diffusion Models关于对比学习关于遥感图像迁移学习
1. 扩散模型子空间设计
Elucidating the Design Space of Diffusion-Based Generative Models

1.1. Introduction
- Identify several changes to both the sampling and training processes, as well as preconditioning of the score networks.
 - Literatures: dense on theory, and derivations of sampling schedule, training dynamics, noise level parameterization.
 - Corresponding dangers: obscuring the available design space— a proposed model may appear as a tightly coupled package where no individual component can be modified without breaking the entire system.
 - Contributions:
- About denoising score matching: to obtain better insights into how these components are linked together and what degrees of freedom are available in the design of the overall system.
 - A higher-order Runge–Kutta method: concerns the sampling processes used to synthesize images using diffusion models.
 - the training of the score-modeling neural network: Derive best practices for improving the training dynamics.
 
 
1.2. Methodology
1.2.1 Expressing diffusion models in a common framework

1.2.2 Improvements to deterministic sampling

1.3. Conclusion and Future Work
- Modular design: putting diffusion models to a common framework.
 - The current high-resolution diffusion models: separate super-resolution steps, subspace projection, very large networks, or hybrid approaches.
 
2. VQVAE与扩散模型的融合
Improved Vector Quantized Diffusion Models

2.1. Introduction
Denoising Diffusion Probability Models:
- Continuous diffusion models: More.
 - Discrete diffusion models: This paper.
 
Studies:
- Better network architecture.
 - Hierarchical structure design.
 - Alternative loss function.
 - Fast sampling strategy.
 
Contribution:
- Explore classifier-free guidance sampling for 
discrete denoising diffusion modeland propose a more general and effective implementation of classifier-free guidance. - Present a high-quality inference strategy to alleviate the joint distribution issue in VQ-Diffusion.
 
- Explore classifier-free guidance sampling for 
 
2.2. Related Work
- VQ-Diffusion

 
2.3. Methodology
Discrete Classifier-free Guidance

High-quality Inference Strategy

2.4. Experiments
Quantitative Analysis:

Qualitative Analysis:

2.5. Conclusion and Future Work
- Two issues: the posterior issue and the joint distribution issue.
 - Proposed: two techniques and improve the quality of the generated samples and their consistency with the input text by a large margin.
 
3. 关于对比学习的一个报告
- 个人OneNote笔记位置: 
1-Note|完备 / 1-Learning|学习 / 103-Method-CL|对比学习 / 对比学习报告——如何更好地理解对比学习 
4. 关于遥感图像迁移学习
4.1 问题描述—域间差异问题
- 动机: 遥感图像场景分类中受到的一些限制—->需提高模型整体泛化性(
迁移学习)- 样本数量角度: 遥感图像样本数量少.
 - 遥感任务角度: 遥感图像的处理一般是在同一个域中,即训练集和测试集会来源于同一类,当存在一个新的无标签信息的数据集需要场景分类时,则需要跨域场景分类。
 
 - 目的: 减少域间差异,提高分类(下游任务)性能。
 
4.2 遥感图像关于域的部分研究现状
4.3 方法分析—部分解决方案的可行性
- 传统数学的角度: 采用机器学习的方式,将域A的图像迁移到域B上,对于每张图像
Xa(真实图像)而言,其坐标或其他特征与图像Xb(生成图像)一一对应(像素级任务)。- 难点: 映射公式(模型或线性关系)的创建 + 图像真实性的判断(损失函数)+ 结果评估(评价指标)
 - 重点: 不同设备不同时间拍摄图像之间的相似与不同,如何一一对应的问题。
 
 - 深度学习的角度: 
- 难点: 隐式关系的学习(公共特征空间的构建)+ 距离度量(KL散度?MMD?)+ 具体模型构建(对比学习?其他特征提取网络?)+ 其他问题(如何应对数据集少以及分辨率高的问题?域自适应中的—半监督/无监督学习)
 - 重点: 怎样实现单一图像之间的转变,并保证图像信息量无缺失。
 
 
5. 下一步计划(关于遥感图像)
- 对图像转换任务的整体性把握
 - 相关方向论文的调研
 - 相关数据集考察(需请教师兄)
 - 具体实现baseline确立
 

